Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Plant Pathol ; 25(1): e13422, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38279848

RESUMEN

Karyopherins, the nucleocytoplasmic transporters, participate in multiple RNA silencing stages by transporting associated proteins into the nucleus. Importin α is a member of karyopherins and has been reported to facilitate virus infection via nuclear import of viral proteins. Unlike other RNA viruses, silencing of importin α2 (α2i) by virus-induced gene silencing (VIGS) boosted the titre of bamboo mosaic virus (BaMV) in protoplasts, and inoculated and systemic leaves of Nicotiana benthamiana. The enhanced BaMV accumulation in importin α2i plants was linked to reduced levels of RDR6-dependent secondary virus-derived small-interfering RNAs (vsiRNAs). Small RNA-seq revealed importin α2 silencing did not affect the abundance of siRNAs derived from host mRNAs but significantly reduced the 21 and 22 nucleotide vsiRNAs in BaMV-infected plants. Deletion of BaMV TGBp1, an RNA silencing suppressor, compromised importin α2i-mediated BaMV enhancement. Moreover, silencing of importin α2 upregulated NbAGO10a, a proviral protein recruited by TGBp1 for BaMV vsiRNAs clearance, but hindered the nuclear import of NbAGO10a. Taken together, these results indicate that importin α2 acts as a negative regulator of BaMV invasion by controlling the expression and nucleocytoplasmic shuttling of NbAGO10a, which removes vsiRNAs via the TGBp1-NbAGO10a-SDN1 pathway. Our findings reveal the hidden antiviral mechanism of importin α2 in countering BaMV infection in N. benthamiana.


Asunto(s)
Potexvirus , alfa Carioferinas , Interferencia de ARN , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Nicotiana/genética , Potexvirus/genética , ARN Viral/genética , ARN Interferente Pequeño/metabolismo
2.
Front Microbiol ; 14: 1139447, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601360

RESUMEN

Satellite RNAs (satRNAs) are molecular parasites that depend on their non-homologous helper viruses (HVs) for essential biological functions. While there are multiple molecular and phylogenetic studies on satRNAs, there is no experimental evolution study on how satRNAs may evolve in common infection conditions. In this study, we serially passaged the Bamboo mosaic virus (BaMV) associated-satRNA (satBaMV) under conditions in which satBaMV either coinfects an uninfected host plant, Nicotiana benthamiana, with BaMV or superinfects a transgenic N. benthamiana expressing the full-length BaMV genome. Single-nucleotide polymorphisms (SNPs) of satBaMV populations were analyzed by deep sequencing. Forty-eight SNPs were identified across four different experimental treatments. Most SNPs are treatment-specific, and some are also ephemeral. However, mutations at positions 30, 34, 63, and 82, all located at the 5' untranslated region (UTR), are universal in all treatments. These universal SNPs are configured into several haplotypes and follow different population dynamics. We constructed isogenic satBaMV strains only differing at positions 30 and 82 and conducted competition experiments in protoplasts and host plants. We found that the haplotype that reached high frequency in protoplasts and inoculation leaves also exhibited poor dissemination to systemic leaves and vice versa, thus suggesting an apparent trade-off between local replication and long-distance dissemination. We posit that the trade-off is likely caused by antagonistic pleiotropy at the 5' UTR. Our findings revealed a hitherto under-explored connection between satRNA genome replication and movement within a host plant. The significance of such a connection during satRNA evolution warrants a more thorough investigation.

3.
Virus Res ; 334: 199179, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481165

RESUMEN

The argonaute (AGO) family proteins play a crucial role in preventing viral invasions through the plant antiviral RNA silencing pathway, with distinct AGO proteins recruited for specific antiviral mechanisms. Our previous study revealed that Nicotiana benthamiana AGO5 (NbAGO5) expression was significantly upregulated in response to bamboo mosaic virus (BaMV) infection. However, the roles of NbAGO5 in antiviral mechanisms remained to be explored. In this research, we examined the antiviral functions of NbAGO5 in the infections of different viruses. It was found that the accumulation of NbAGO5 was induced not only at the RNA but also at the protein level following the infections of BaMV, potato virus X (PVX), tobacco mosaic virus (TMV), and cucumber mosaic virus (CMV) in N. benthamiana. To explore the antiviral mechanism and regulatory function of NbAGO5, we generated NbAGO5 overexpression (OE-NbAGO5) and knockout (nbago5) transgenic N. benthamiana lines. Our findings reveal that NbAGO5 provides defense against BaMV, PVX, TMV, and a mutant CMV deficient in 2b gene, but not against the wild-type CMV and turnip mosaic virus (TuMV). Through affinity purification and small RNA northern blotting, we demonstrated that NbAGO5 exerts its antiviral function by binding to viral small interfering RNAs (vsiRNAs). Moreover, we observed that CMV 2b and TuMV HC-Pro interact with NbAGO5, triggering its degradation via the 26S proteasome and autophagy pathways, thereby allowing these viruses to overcome NbAGO5-mediated defense. In addition, TuMV HC-Pro provides another line of counter-defense by interfering with vsiRNA binding by NbAGO5. Our study provides further insights into the antiviral RNA interference mechanism and the complex interplay between NbAGO5 and plant viruses.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Nicotiana , Antivirales/metabolismo , Interferencia de ARN , Cucumovirus/genética , ARN/metabolismo , Enfermedades de las Plantas
4.
Plant Physiol ; 191(2): 904-924, 2023 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-36459587

RESUMEN

Intracellular movement is an important step for the initial spread of virus in plants during infection. This process requires virus-encoded movement proteins (MPs) and their interaction with host factors. Despite the large number of known host factors involved in the movement of different viruses, little is known about host proteins that interact with one of the MPs encoded by potexviruses, the triple-gene-block protein 3 (TGBp3). The main obstacle lies in the relatively low expression level of potexviral TGBp3 in hosts and the weak or transient nature of interactions. Here, we used TurboID-based proximity labeling to identify the network of proteins directly or indirectly interacting with the TGBp3 of a potexvirus, Bamboo mosaic virus (BaMV). Endoplasmic reticulum (ER) luminal-binding protein 4 and calreticulin 3 of Nicotiana benthamiana (NbBiP4 and NbCRT3, respectively) associated with the functional TGBp3-containing BaMV movement complexes, but not the movement-defective mutant, TGBp3M. Fluorescent microscopy revealed that TGBp3 colocalizes with NbBiP4 or NbCRT3 and the complexes move together along ER networks to cell periphery in N. benthamiana. Loss- and gain-of-function experiments revealed that NbBiP4 or NbCRT3 is required for the efficient spread and accumulation of BaMV in infected leaves. In addition, overexpression of NbBiP4 or NbCRT3 enhanced the targeting of BaMV TGBp1 to plasmodesmata (PD), indicating that NbBiP4 and NbCRT3 interact with TGBp3 to promote the intracellular transport of virion cargo to PD that facilitates virus cell-to-cell movement. Our findings revealed additional roles for NbBiP4 and NbCRT3 in BaMV intracellular movement through ER networks or ER-derived vesicles to PD, which enhances the spread of BaMV in N. benthamiana.


Asunto(s)
Potexvirus , Proteínas Virales , Proteínas Virales/metabolismo , Proteínas Portadoras/metabolismo , Calreticulina/genética , Calreticulina/metabolismo , Plantas/metabolismo , Nicotiana/metabolismo , Retículo Endoplásmico/metabolismo
5.
Front Bioeng Biotechnol ; 11: 1341340, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274005

RESUMEN

Plants offer a promising platform for cost-effective production of biologically active therapeutic glycoproteins. In previous studies, we have developed a plant expression system based on Bamboo mosaic virus (BaMV) by incorporating secretory signals and an affinity tag, which resulted in notably enhanced yields of soluble and secreted fusion glycoproteins (FGs) in Nicotiana benthamiana. However, the presence of fusion tags on recombinant glycoproteins is undesirable for biomedical applications. This study aimed to develop a refined expression system that can efficiently produce tag-free glycoproteins in plants, with enhanced efficacy of mature interferon gamma (mIFNγ) against viruses. To accommodate the specific requirement of different target proteins, three enzymatically or chemically cleavable linkers were provided in this renovated BaMV-based expression system. We demonstrated that Tobacco etch virus (TEV) protease could process the specific cleavage site (LTEV) of the fusion protein, designated as SSExtHis(SP)10LTEV-mIFNγ, with optimal efficiency under biocompatible conditions to generate tag-free mIFNγ glycoproteins. The TEV protease and secretory-affinity tag could be effectively removed from the target mIFNγ glycoproteins through Ni2+-NTA chromatography. In addition, the result of an antiviral assay showed that the tag-free mIFNγ glycoproteins exhibited enhanced biological properties against Sindbis virus, with comparable antiviral activity of the commercialized HEK293-expressed hIFNγ. Thus, the improved BaMV-based expression system developed in this study may provide an alternative strategy for producing tag-free therapeutic glycoproteins intended for biomedical applications.

6.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077222

RESUMEN

Plant ARGONAUTES (AGOs) play a significant role in the defense against viral infection. Previously, we have demonstrated that AGO5s encoded in Phalaenopsis aphrodite subsp. formosana (PaAGO5s) took an indispensable part in defense against major viruses. To understand the underlying defense mechanism, we cloned PaAGO5s promoters (pPaAGO5s) and analyzed their activity in transgenic Nicotiana benthamiana using ß-glucuronidase (GUS) as a reporter gene. GUS activity analyses revealed that during Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV) infections, pPaAGO5b activity was significantly increased compared to pPaAGO5a and pPaAGO5c. Analysis of pPaAGO5b 5'-deletion revealed that pPaAGO5b_941 has higher activity during virus infection. Further, yeast one-hybrid analysis showed that the transcription factor NbMYB30 physically interacted with pPaAGO5b_941 to enhance its activity. Overexpression and silencing of NbMYB30 resulted in up- and downregulation of GUS expression, respectively. Exogenous application and endogenous measurement of phytohormones have shown that methyl jasmonate and salicylic acid respond to viral infections. NbMYB30 overexpression and its closest related protein, PaMYB30, in P. aphrodite subsp. formosana reduced CymMV accumulation in P. aphrodite subsp. formosana. Based on these discoveries, this study uncovers the interaction between virus-responsive promoter and the corresponding transcription factor in plants.


Asunto(s)
Potexvirus , Virosis , Plantas , Potexvirus/genética , Nicotiana/genética , Factores de Transcripción
7.
Front Plant Sci ; 13: 924482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812928

RESUMEN

Plant argonautes (AGOs) play important roles in the defense responses against viruses. The expression of Nicotiana benthamiana AGO5 gene (NbAGO5) is highly induced by Bamboo mosaic virus (BaMV) infection; however, the underlying mechanisms remain elusive. In this study, we have analyzed the potential promoter activities of NbAGO5 and its interactions with viral proteins by using a 2,000 bp fragment, designated as PN1, upstream to the translation initiation of NbAGO5. PN1 and seven serial 5'-deletion mutants (PN2-PN8) were fused with a ß-glucuronidase (GUS) reporter and introduced into the N. benthamiana genome by Agrobacterium-mediated transformation for further characterization. It was found that PN4-GUS transgenic plants were able to drive strong GUS expression in the whole plant. In the virus infection tests, the GUS activity was strongly induced in PN4-GUS transgenic plants after being challenged with potexviruses. Infiltration of the transgenic plants individually with BaMV coat protein (CP) or triple gene block protein 1 (TGBp1) revealed that only TGBp1 was crucial for inducing the NbAGO5 promoter. To identify the factors responsible for controlling the activity of the NbAGO5 promoter, we employed yeast one-hybrid screening on a transcription factor cDNA library. The result showed that NbNAC42 and NbZFP3 could directly bind the 704 bp promoter regions of NbAGO5. By using overexpressing and virus-induced gene silencing techniques, we found that NbNAC42 and NbZFP3 regulated and downregulated, respectively, the expression of the NbAGO5 gene. Upon virus infection, NbNAC42 played an important role in regulating the expression of NbAGO5. Together, these results provide new insights into the modulation of the defense mechanism of N. benthamiana against viruses. This virus inducible promoter could be an ideal candidate to drive the target gene expression that could improve the anti-virus abilities of crops in the future.

8.
Viruses ; 14(4)2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35458428

RESUMEN

New isolates of the Bamboo mosaic virus (BaMV) were identified in Bambusa funghomii bamboo in Vietnam. Sequence analyses revealed that the Vietnam isolates are distinct from all known BaMV strains, sharing the highest sequence identities (about 77%) with the Yoshi isolates reported in California, USA. Unique satellite RNAs were also found to be associated with the BaMV Vietnam isolates. A possible recombination event was detected in the genome of BaMV-VN2. A highly variable region was identified in the ORF1 gene, in between the methyl transferase domain and helicase domain. These results revealed the presence of unique BaMV isolates in an additional bamboo species in one more country, Vietnam, and provided evidence in support of the possible involvement of environmental or host factors in the diversification and evolution of BaMV.


Asunto(s)
Bambusa , Potexvirus , Bambusa/genética , Potexvirus/genética , ARN Viral/genética , Nicotiana , Vietnam
9.
Viruses ; 14(3)2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35336906

RESUMEN

Begomoviruses frequently inflict upward or downward leaf curling symptoms on infected plants, leading to severe economic damages. Knowledge of the underlying mechanism controlling the leaf curling severity may facilitate the development of alternative disease management strategies. In this study, through genomic recombination between Ageratum yellow vein virus Nan-Tou strain (AYVV-NT) and Tomato leaf curl virus Tai-Chung Strain (TLCV-TC), which caused upward and downward leaf curling on Nicotiana benthamiana, respectively, it was found that the coding region of C4 protein might be involved in the determination of leaf curling directions. Sequence comparison and mutational analysis revealed that the cysteine and glycine at position 8 and 14 of AYVV-TC C4 protein, respectively, are involved in the modulation of leaf curling symptoms. Cross-protection assays further demonstrated that N. benthamiana inoculated with AYVV-carrying mutations of the aforementioned amino acids exhibited attenuated leaf curling symptoms under the challenge of wild-type AYVV-NT. Together, these findings revealed a new function of begomovirus C4 proteins involved in the modulation of leaf curling severity during symptom formation and suggested potential applications for managing viral diseases through manipulating the symptoms.


Asunto(s)
Begomovirus , Solanum lycopersicum , Aminoácidos , Begomovirus/genética , Enfermedades de las Plantas
10.
Plant Physiol ; 188(1): 593-607, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34695209

RESUMEN

Virus infections that cause mosaic or mottling in leaves commonly also induce increased levels of reactive oxygen species (ROS). However, how ROS contributes to symptoms is less well documented. Bamboo mosaic virus (BaMV) causes chlorotic mosaic symptoms in both Brachypodium distachyon and Nicotiana benthamiana. The BaMV △CPN35 mutant with an N-terminal deletion of its coat protein gene exhibits asymptomatic infection independently of virus titer. Histochemical staining of ROS in mock-, BaMV-, and BaMV△CPN35-infected leaves revealed that hydrogen peroxide (H2O2) accumulated solely in BaMV-induced chlorotic spots. Moreover, exogenous H2O2 treatment enhanced yellowish chlorosis in BaMV-infected leaves. Both BaMV and BaMV△CPN35 infection could induce the expression of Cu/Zu superoxide dismutase (CSD) antioxidants at messenger RNA and protein level. However, BaMV triggered the abundant accumulation of full-length NbCSD2 preprotein (prNbCSD2, without transit peptide cleavage), whereas BaMV△CPN35 induced a truncated prNbCSD2. Confocal microscopy showed that majority of NbCSD2-green fluorescent protein (GFP) predominantly localized in the cytosol upon BaMV infection, but BaMV△CPN35 infection tended to cause NbCSD2-GFP to remain in chloroplasts. By 5'-RNA ligase-mediated rapid amplification of cDNA ends, we validated CSDs are the targets of miR398 in vivo. Furthermore, BaMV infection increased the level of miR398, while the level of BaMV titer was regulated positively by miR398 but negatively by CSD2. In contrast, overexpression of cytosolic form NbCSD2, impairing the transport into chloroplasts, greatly enhanced BaMV accumulation. Taken together, our results indicate that induction of miR398 by BaMV infection may facilitate viral titer accumulation, and cytosolic prNbCSD2 induction may contribute to H2O2 accumulation, resulting in the development of BaMV chlorotic symptoms in plants.


Asunto(s)
Antioxidantes/metabolismo , Brachypodium/genética , Brachypodium/virología , Peróxido de Hidrógeno/metabolismo , Nicotiana/genética , Nicotiana/virología , Enfermedades de las Plantas/genética , Potexvirus/patogenicidad , Brachypodium/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/virología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/virología , Nicotiana/metabolismo , Virulencia/efectos de los fármacos , Virulencia/genética
11.
Plant Physiol ; 188(2): 1061-1080, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747475

RESUMEN

Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.


Asunto(s)
Proteínas de la Membrana/metabolismo , Virus del Mosaico/patogenicidad , Nicotiana/virología , Enfermedades de las Plantas/virología , Potexvirus/patogenicidad , ARN Polimerasa Dependiente del ARN/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Interacciones Huésped-Parásitos
12.
Front Immunol ; 12: 739837, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34721406

RESUMEN

We have developed a new binary epitope-presenting CVP platform based on bamboo mosaic virus (BaMV) by using the sortase A (SrtA)-mediated ligation technology. The reconstructed BaMV genome harbors two modifications: 1) a coat protein (CP) with N-terminal extension of the tobacco etch virus (TEV) protease recognition site plus 4 extra glycine (G) residues as the SrtA acceptor; and 2) a TEV protease coding region replacing that of the triple-gene-block proteins. Inoculation of such construct, pKB5G, on Nicotiana benthamiana resulted in the efficient production of filamentous CVPs ready for SrtA-mediated ligation with desired proteins. The second part of the binary platform includes an expression vector for the bacterial production of donor proteins. We demonstrated the applicability of the platform by using the recombinant envelope protein domain III (rEDIII) of Japanese encephalitis virus (JEV) as the antigen. Up to 40% of the BaMV CP subunits in each CVP were loaded with rEDIII proteins in 1 min. The rEDIII-presenting BaMV CVPs (BJLPET5G) could be purified using affinity chromatography. Immunization assays confirmed that BJLPET5G could induce the production of neutralizing antibodies against JEV infections. The binary platform could be adapted as a useful alternative for the development and mass production of vaccine candidates.


Asunto(s)
Aminoaciltransferasas/metabolismo , Antígenos Virales/administración & dosificación , Proteínas Bacterianas/metabolismo , Cisteína Endopeptidasas/metabolismo , Virus de la Encefalitis Japonesa (Especie)/inmunología , Encefalitis Japonesa/prevención & control , Endopeptidasas/metabolismo , Vacunas contra la Encefalitis Japonesa/administración & dosificación , Potexvirus/enzimología , Virión/enzimología , Aminoaciltransferasas/genética , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/genética , Antígenos Virales/inmunología , Proteínas Bacterianas/genética , Línea Celular , Cisteína Endopeptidasas/genética , Modelos Animales de Enfermedad , Virus de la Encefalitis Japonesa (Especie)/genética , Encefalitis Japonesa/sangre , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/virología , Endopeptidasas/genética , Escherichia coli/genética , Escherichia coli/inmunología , Escherichia coli/metabolismo , Femenino , Vectores Genéticos , Inmunogenicidad Vacunal , Vacunas contra la Encefalitis Japonesa/genética , Vacunas contra la Encefalitis Japonesa/inmunología , Ratones Endogámicos BALB C , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Plantas Modificadas Genéticamente/metabolismo , Potexvirus/genética , Potexvirus/inmunología , Nicotiana/genética , Nicotiana/inmunología , Nicotiana/metabolismo , Virión/genética , Virión/inmunología
13.
Viruses ; 13(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34452417

RESUMEN

Synergistic interactions among viruses, hosts and/or transmission vectors during mixed infection can alter viral titers, symptom severity or host range. Viral suppressors of RNA silencing (VSRs) are considered one of such factors contributing to synergistic responses. Odontoglossum ringspot virus (ORSV) and cymbidium mosaic virus (CymMV), which are two of the most significant orchid viruses, exhibit synergistic symptom intensification in Phalaenopsis orchids with unilaterally enhanced CymMV movement by ORSV. In order to reveal the underlying mechanisms, we generated infectious cDNA clones of ORSV and CymMV isolated from Phalaenopsis that exerted similar unilateral synergism in both Phalaenopsis orchid and Nicotiana benthamiana. Moreover, we show that the ORSV replicase P126 is a VSR. Mutagenesis analysis revealed that mutation of the methionine in the carboxyl terminus of ORSV P126 abolished ORSV replication even though some P126 mutants preserved VSR activity, indicating that the VSR function of P126 alone is not sufficient for viral replication. Thus, P126 functions in both ORSV replication and as a VSR. Furthermore, P126 expression enhanced cell-to-cell movement and viral titers of CymMV in infected Phalaenopsis flowers and N. benthamiana leaves. Taking together, both the VSR and protein function of P126 might be prerequisites for unilaterally enhancing CymMV cell-to-cell movement by ORSV.


Asunto(s)
Coinfección/virología , Orchidaceae/virología , Células Vegetales/virología , Potexvirus/metabolismo , Tobamovirus/metabolismo , Proteínas de la Cápside/genética , Sinergismo Farmacológico , Interacciones Microbianas , Potexvirus/genética , Interferencia de ARN , ARN Viral/genética , Nicotiana/virología , Tobamovirus/genética , Replicación Viral
14.
J Virol ; 95(20): e0083121, 2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34379502

RESUMEN

Many positive-strand (+) RNA viruses produce subgenomic RNAs (sgRNAs) in the infection cycle through the combined activities of viral replicase and host proteins. However, knowledge about host proteins involved in direct sgRNA promoter recognition is limited. Here, in the partially purified replicase complexes from Bamboo mosaic virus (BaMV)-infected tissue, we have identified the Nicotiana benthamiana photosystem II oxygen-evolving complex protein, NbPsbO1, which specifically interacted with the promoter of sgRNA but not that of genomic RNA (gRNA). Silencing of NbPsbO1 expression suppressed BaMV accumulation in N. benthamiana protoplasts without affecting viral gRNA replication. Overexpression of wild-type NbPsbO1 stimulated BaMV sgRNA accumulation. Fluorescent microscopy examination revealed that the fluorescence associated with NbPsbO1 was redistributed from chloroplast granal thylakoids to stroma in BaMV-infected cells. Overexpression of a mislocalized mutant of NbPsbO1, dTPPsbO1-T7, inhibited BaMV RNA accumulation in N. benthamiana, whereas overexpression of an NbPsbO1 derivative, sPsbO1-T7, designed to be targeted to chloroplast stroma, upregulated the sgRNA level. Furthermore, depletion of NbPsbO1 in BaMV RdRp preparation significantly inhibited sgRNA synthesis in vitro but exerted no effect on (+) or (-) gRNA synthesis, which indicates that NbPsbO1 is required for efficient sgRNA synthesis. These results reveal a novel role for NbPsbO1 in the selective enhancement of BaMV sgRNA transcription, most likely via direct interaction with the sgRNA promoter. IMPORTANCE Production of subgenomic RNAs (sgRNAs) for efficient translation of downstream viral proteins is one of the major strategies adapted for viruses that contain a multicistronic RNA genome. Both viral genomic RNA (gRNA) replication and sgRNA transcription rely on the combined activities of viral replicase and host proteins, which recognize promoter regions for the initiation of RNA synthesis. However, compared to the cis-acting elements involved in the regulation of sgRNA synthesis, the host factors involved in sgRNA promoter recognition mostly remain to be elucidated. Here, we found a chloroplast protein, NbPsbO1, which specifically interacts with Bamboo mosaic virus (BaMV) sgRNA promoter. We showed that NbPsbO1 is relocated to the BaMV replication site in BaMV-infected cells and demonstrated that NbPsbO1 is required for efficient BaMV sgRNA transcription but exerts no effect on gRNA replication. This study provides a new insight into the regulating mechanism of viral gRNA and sgRNA synthesis.


Asunto(s)
Nicotiana/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Potexvirus/metabolismo , Regiones no Traducidas 3' , Cloroplastos/metabolismo , Proteínas de Plantas/genética , Potexvirus/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN/genética , ARN/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Nicotiana/genética , Nicotiana/virología , Proteínas Virales/metabolismo , Proteinas del Complejo de Replicasa Viral/genética , Proteinas del Complejo de Replicasa Viral/metabolismo , Replicación Viral/fisiología
15.
Viruses ; 13(4)2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805417

RESUMEN

Plant viruses can be genetically modified to generate chimeric virus particles (CVPs) carrying heterologous peptides fused on the surface of coat protein (CP) subunits as vaccine candidates. However, some factors may be especially significant in determining the properties of chimeras. In this study, peptides from various sources and of various lengths were inserted into the Bamboo mosaic virus-based (BaMV) vector CP N-terminus to examine the chimeras infecting and accumulating in plants. Interestingly, it was found that the two different strains Foot-and-mouth disease virus (FMDV) VP1 antigens with flexible linker peptides (77 or 82 amino acids) were directly expressed on the BaMV CP, and the chimeric particles self-assembled and continued to express FMDV antigens. The chimeric CP, when directly fused with a large foreign protein (117 amino acids), can self-fold into incomplete virus particles or disks. The physicochemical properties of heterologus peptides N-terminus, complex strand structures of heterologus peptides C-terminus and different flexible linker peptides, can affect the chimera accumulation. Based on these findings, using plant virus-based chimeras to express foreign proteins can increase their length limitations, and engineered plant-made CVP-based vaccines have increasing potential for further development as novel vaccines.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Potexvirus/genética , Antígenos Virales/inmunología , Epítopos/genética , Epítopos/inmunología , Virus de la Fiebre Aftosa/genética , Virus de Plantas/inmunología , Potexvirus/inmunología , Vacunas Sintéticas/inmunología , Virión/genética , Virión/inmunología
16.
Mol Plant Pathol ; 22(6): 627-643, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33749125

RESUMEN

The orchid industry faces severe threats from diseases caused by viruses. Argonaute proteins (AGOs) have been shown to be the major components in the antiviral defence systems through RNA silencing in many model plants. However, the roles of AGOs in orchids against viral infections have not been analysed comprehensively. In this study, Phalaenopsis aphrodite subsp. formosana was chosen as the representative to analyse the AGOs (PaAGOs) involved in the defence against two major viruses of orchids, Cymbidium mosaic virus (CymMV) and Odontoglossum ringspot virus (ORSV). A total of 11 PaAGOs were identified from the expression profile analyses of these PaAGOs in P. aphrodite subsp. formosana singly or doubly infected with CymMV and/or ORSV. PaAGO5b was found to be the only one highly induced. Results from overexpression of individual PaAGO5 family genes revealed that PaAGO5a and PaAGO5b play central roles in the antiviral defence mechanisms of P. aphrodite subsp. formosana. Furthermore, a virus-induced gene silencing vector based on Foxtail mosaic virus was developed to corroborate the function of PaAGO5s. The results confirmed their importance in the defences against CymMV and ORSV. Our findings may provide useful information for the breeding of traits for resistance or tolerance to CymMV or ORSV infections in Phalaenopsis orchids.


Asunto(s)
Proteínas Argonautas/metabolismo , Resistencia a la Enfermedad/genética , Orchidaceae/genética , Enfermedades de las Plantas/inmunología , Potexvirus/fisiología , Tobamovirus/fisiología , Proteínas Argonautas/genética , Orchidaceae/inmunología , Orchidaceae/virología , Fitomejoramiento , Enfermedades de las Plantas/virología , Potexvirus/genética , Interferencia de ARN
17.
Front Plant Sci ; 11: 594758, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281853

RESUMEN

Plant viruses may serve as expression vectors for the efficient production of pharmaceutical proteins in plants. However, the downstream processing and post-translational modifications of the target proteins remain the major challenges. We have previously developed an expression system derived from Bamboo mosaic virus (BaMV), designated pKB19, and demonstrated its applicability for the production of human mature interferon gamma (mIFNγ) in Nicotiana benthamiana. In this study, we aimed to enhance the yields of soluble and secreted mIFNγ through the incorporation of various plant-derived signal peptides. Furthermore, we analyzed the glycosylation patterns and the biological activity of the mIFNγ expressed by the improved pKB19 expression system in N. benthamiana. The results revealed that the fusion of a native N. benthamiana extensin secretory signal (SSExt) to the N-terminal of mIFNγ (designated SSExt mIFNγ) led to the highest accumulation level of protein in intracellular (IC) or apoplast washing fluid (AWF) fractions of N. benthamiana leaf tissues. The addition of 10 units of 'Ser-Pro' motifs of hydroxyproline-O-glycosylated peptides (HypGPs) at the C-terminal end of SSExt mIFNγ (designated SSExt mIFNγ(SP)10) increased the solubility to nearly 2.7- and 1.5-fold higher than those of mIFNγ and SSExt mIFNγ, respectively. The purified soluble SSExt mIFNγ(SP)10 protein was glycosylated with abundant complex-type N-glycan attached to residues N56 and N128, and exhibited biological activity against Sindbis virus and Influenza virus replication in human cell culture systems. In addition, suspension cell cultures were established from transgenic N. benthamiana, which produced secreted SSExt mIFNγ(SP)10 protein feasible for downstream processing. These results demonstrate the applicability of the BaMV-based vector systems as a useful alternative for the production of therapeutic proteins, through the incorporation of appropriate fusion tags.

18.
Plant Cell Physiol ; 61(6): 1204-1212, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32181856

RESUMEN

Small RNA (sRNA), such as microRNA (miRNA) and short interfering RNA, are well-known to control gene expression based on degradation of target mRNA in plants. A considerable amount of research has applied next-generation sequencing (NGS) to reveal the regulatory pathways of plant sRNAs. Consequently, numerous bioinformatics tools have been developed for the purpose of analyzing sRNA NGS data. However, most methods focus on the study of sRNA expression profiles or novel miRNAs predictions. The analysis of sRNA target genes is usually not integrated into their pipelines. As a result, there is still no means available for identifying the interaction mechanisms between host and virus or the synergistic effects between two viruses. For the present study, a comprehensive system, called the Small RNA Illustration System (sRIS), has been developed. This system contains two main components. The first is for sRNA overview analysis and can be used not only to identify miRNA but also to investigate virus-derived small interfering RNA. The second component is for sRNA target prediction, and it employs both bioinformatics calculations and degradome sequencing data to enhance the accuracy of target prediction. In addition, this system has been designed so that figures and tables for the outputs of each analysis can be easily retrieved and accessed, making it easier for users to quickly identify and quantify their results. sRIS is available at http://sris.itps.ncku.edu.tw/.


Asunto(s)
Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plantas/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Biblioteca Genómica , MicroARNs/genética , MicroARNs/fisiología , ARN de Planta/fisiología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/fisiología , ARN Pequeño no Traducido/fisiología , Análisis de Secuencia de ARN/métodos
19.
Curr Opin Virol ; 42: 1-7, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32222536

RESUMEN

Abscisic acid (ABA) regulates plant responses to different stimuli including viral infections through two different defense mechanisms; the antiviral RNA silencing pathway and callose accumulation. In some pathosystems, induction of these defense mechanisms is stronger in plants with resistance (R)-genes than in more susceptible plants. Mutants in several RNA silencing genes are hypersensitive to ABA, which suggests that these genes exert a regulatory feedback loop on ABA signaling. This scenario suggests that the RNA silencing pathway can target genes involved in the ABA pathway to control ABA production/signaling since prolonged production of this stress hormone arrests plant growth and development. Mutations in the ABA or salicylic acid pathways do not completely repress RNA silencing genes, indicating that RNA silencing represents a regulatory hub through which different pathways exert some of their functions, and thus the regulation of RNA silencing could be subject to hormone balancing in plants.


Asunto(s)
Ácido Abscísico/inmunología , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/inmunología , Proteínas de Plantas/genética , Virus de Plantas/fisiología , Plantas/genética , Interferencia de ARN , Resistencia a la Enfermedad , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/inmunología , Virus de Plantas/genética , Plantas/inmunología , Plantas/virología , Transducción de Señal
20.
Front Plant Sci ; 11: 597665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424893

RESUMEN

Viruses hijack various organelles and machineries for their replication and movement. Ever more lines of evidence indicate that specific nuclear factors are involved in systemic trafficking of several viruses. However, how such factors regulate viral systemic movement remains unclear. Here, we identify a novel role for Nicotiana benthamiana high mobility group nucleoprotein (NbHMG1/2a) in virus movement. Although infection of N. benthamiana with Bamboo mosaic virus (BaMV) decreased NbHMG1/2a expression levels, nuclear-localized NbHMG1/2a protein was shuttled out of the nucleus into cytoplasm upon BaMV infection. NbHMG1/2a knockdown or even overexpression did not affect BaMV accumulation in inoculated leaves, but it did enhance systemic movement of the virus. Interestingly, the positive regulator Rap-GTPase activation protein 1 was highly upregulated upon infection with BaMV, whereas the negative regulator thioredoxin h protein was greatly reduced, no matter if NbHMG1a/2a was silenced or overexpressed. Our findings indicate that NbHMG1/2a may have a role in plant defense responses. Once its homeostasis is disrupted, expression of relevant host factors may be perturbed that, in turn, facilitates BaMV systemic movement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...